EGBU3504 THRU EGBU3506

GLASS PASSIVATED SUPER FAST SINGLE-PHASE BRIDGE RECTIFIER

REVERSE VOLTAGE: 400 to 600 VOLTS FORWARD CURRENT: 35.0 AMPERE

FEATURES

· Glass passivated chip junction

· Reliable low cost construction utilizing molded plastic technique

- · Ideal for printed circuit board
- · Low forward voltage drop
- · Low reverse leakage current
- · High surge current capability

MECHANICAL DATA

Case: Molded plastic, GBJ

Epoxy: UL 94V-O rate flame retardant

Terminals: Leads solderable per MIL-STD-202,

method 208 guaranteed Mounting position: Any

Mounting Torque: 8.17 inches-lbs max.

1.193 (30.3) 1.193 (30.3) 1.169 (29.7) 1.106 (2.7) 1.106 (2.7) 1.106 (2.7) 1.106 (2.7) 1.106 (2.7) 1.106 (2.7) 1.106 (2.7) 1.106 (2.7) 1.106 (2.7) 1.106 (2.7)

GBJ

106 (2.7)
098 (2.3)
098 (2.4)
078 (2.0)
098 (2.5)
098 (2.5)
098 (2.5)
098 (2.5)
098 (2.5)
098 (2.5)
098 (2.5)
098 (2.5)
098 (2.5)

Dimensions in inches and (millimeters)

Maximum Ratings and Electrical Characteristics

Ratings at 25°C ambient temperature unless otherwise specified.

Single phase, half wave, 60Hz, resistive or inductive load.

For capacitive load, derate current by 20%.

	Symbols	EGBJ3504	EGBJ3506	Units
Maximum Recurrent Peak Reverse Voltage	V _{RRM}	400	600	Volts
Maximum RMS Voltage	V _{RMS}	280	420	Volts
Maximum DC Blocking Voltage	V _{DC}	400	600	Volts
Maximum Average Forward Rectified Current with Heatsink at T_C =90 $^{\circ}$ C	I _(AV)	35		Amp
Peak Forward Surge Current,				
8.3ms single half-sine-wave	I_{FSM}	I _{FSM} 250		Amp
superimposed on rated load (JEDEC method)				
Maximum Forward Voltage Drop per Element at 17.5A DC and 25 ℃	V_{F}	1.5	2.0	Volts
Maximum Reverse Current at T _A =25℃	10.0		0.0	uAmp
at Rated DC Blocking Voltage T _A =125℃	I_R	500		
Typical Junction Capacitance (Note 1)	C_{J}	60		pF
Maximum Reverse Recovery Time (Note 2)	T_{RR}	50		nS
Typical Thermal Resistance (Note 3)	$R_{\theta JC}$	0.8		°C/W
Operating and Storage Temperature Range	T _J , Tstg	-55 to +150		ဗ

NOTES

- 1- Measured at 1 MHz and applied reverse voltage of 4.0 VDC.
- 2- Reverse Recovery Test Conditions: I_F =.5A, I_R =1A, I_{RR} =.25A.
- 3- Thermal Resistance fromn Junction to Case with Device Mounted on 300mm x 300mm x 1.6mmCu Plate Heatsink.

RATINGS AND CHARACTERISTIC CURVES

Fig.1 Forward Current Derating Curve

FIG.2- MAXIMUM NON-REPETITIVE FORWARD SURGE CURRENT PER BRIDGE ELEMENT

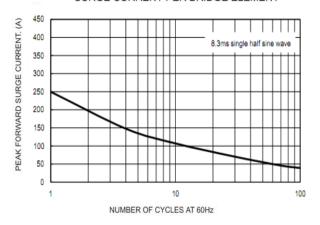


FIG.3- TYPICAL REVERSE CHARACTERISTICS

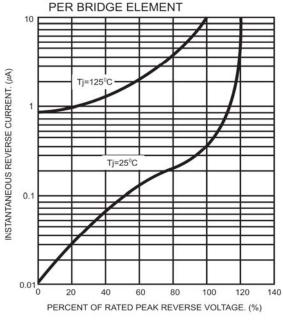
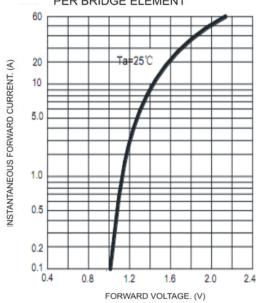
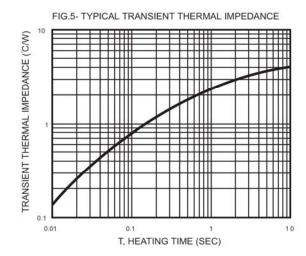




FIG.4- TYPICAL FORWARD CHARACTERISTICS PER BRIDGE ELEMENT

